Modified Nodal Cubic Spline Collocation For Poisson's Equation

نویسندگان

  • Abeer Ali Abushama
  • Bernard Bialecki
چکیده

Abstract. We present a new modified nodal cubic spline collocation scheme for solving the Dirichlet problem for Poisson’s equation on the unit square. We prove existence and uniqueness of a solution of the scheme and show how the solution can be computed on an (N + 1) × (N + 1) uniform partition of the square with cost O(NlogN) using a direct fast Fourier transform method. Using two comparison functions, we derive an optimal fourth order error bound in the continuous maximum norm. We compare our scheme with other modified nodal cubic spline collocation schemes, in particular, the one proposed by Houstis et al. in [8]. We believe that our paper gives the first correct convergence analysis of a modified nodal cubic spline collocation for solving partial differential equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of linear combination between cubic B-spline collocation methods with different basis for solving the KdV equation

In the present article, a numerical method is proposed for the numerical solution of the KdV equation by using a new approach by combining cubic B-spline functions. In this paper we convert the KdV equation to system of two equations. The method is shown to be unconditionally stable using von-Neumann technique. To test accuracy the error norms L2, L∞ are computed. Three invariants of motion are...

متن کامل

Numerical solution of second order one dimensional hyperbolic telegraph equation by cubic B-spline collocation method

The present paper uses new approach and methodology to solve second order one dimensional hyperbolic telegraph equation numerically by B-spline collocation method. It is based on collocation of modified cubic B-spline basis functions over the finite elements. The given equation is decomposed into system of equations and modified cubic B-spline basis functions have been used for spatial variable...

متن کامل

Numerical solutions of nonlinear Fisher's reaction–diffusion equation with modified cubic B-spline collocation method

In this paper, a numerical method is proposed to approximate the numeric solutions of nonlinear Fisher's reaction– diffusion equation with modified cubic B-spline collocation method. The method is based on collocation of modified cubic B-splines over finite elements, so we have continuity of the dependent variable and its first two derivatives throughout the solution range. We apply modified cu...

متن کامل

Numerical studies of non-local hyperbolic partial differential equations using collocation methods

The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...

متن کامل

A new approach to using the cubic B-spline functions to solve the Black-Scholes equation

Nowadays, options are common financial derivatives. For this reason, by increase of applications for these financial derivatives, the problem of options pricing is one of the most important economic issues. With the development of stochastic models, the need for randomly computational methods caused the generation of a new field called financial engineering. In the financial engineering the pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2007